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Supplementary Figures 

 

Supplementary Fig. 1: Demonstration of Alleloscope’s refinement step on two 
example regions of P5931. For chr2 and chr3 (each row) of P5931, the haplotype 
profiles of three scenarios are shown (each column): !𝜌#!" , 𝜃&!"' values with 𝜃&!" computed 
by plugging known SNP phases from matched linked-read sequencing data, colored by 
the inferred haplotype profile from the second-round estimation; !𝜌#!" , 𝜃(!"' values with 𝜃(!" 
originally estimated by Alleloscope; and !𝜌#!" , 𝜃(′!"'  values with 𝜃(′!"  estimated by 
Alleloscope‘s refinement step. The colors and shapes represent different haplotype 
profiles from the original and second-round estimation. 
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Supplementary Fig. 2: The estimated genome-wide haplotype profiles by 
Alleloscope with (top) and without (bottom) known phases for the P5931 sample. 
In the color legend, M and m represent the “Major haplotype” and “minor haplotype” 
respectively. The cells in both plots are ordered by their ordering in the linked-read-based 
heatmap. 
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Supplementary Fig. 3: The estimated genome-wide haplotype profiles by CHISEL 
with and without known phases for the P5931 sample under different settings. For 
each result (each row), CHISEL gives two heatmaps: the allele-specific copy number 
state (left), and the major/minor haplotypes where there is an allelic imbalance (right). 
CHISEL includes an additional “correction step”, in which the inferred clones are used to 
generate consensus allele-specific copy number profiles for all cells within each clone. (a) 
The result before correction estimated using the default setting with the cell’s ordering 
from d. (b) The result after correction estimated using the default setting with the cell’s 
ordering from d. (c) The result after correction estimated using a block size=1 with the 
cell’s ordering from d. (d) The result by plugging in known phases provided by the 
matched tumor linked-read sequencing with 1M block size. (e) The result by plugging in 
known phases provided by the matched tumor linked-read sequencing with 50k block size. 
(f) The result by plugging in known phases provided by the matched normal linked-read 
sequencing with 1M block size. 
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Supplementary Fig. 4: Down-sampling results of both Alleloscope and CHISEL on 
a high-coverage scDNA-seq dataset of a breast cancer sample (section E). The 
results on the original dataset (left), on the 50% subsampled dataset (middle) and on the 
25% subsampled dataset (right), given by Alleloscope (a) and CHISEL (b). For 
Alleloscope, M and m represent the “Major haplotype” and “minor haplotype” respectively 
in the color legend. For CHISEL, two heatmaps are given: the allele-specific copy number 
state (top), and the major/minor haplotypes where there is an allelic imbalance (bottom). 
The corrected plots are shown here. The cells in the plots of 50% and 25 subsampled 
datasets are ordered by their ordering in the linked-read-based heatmap respectively for 
the two methods. 
 



 8 

 
Supplementary Fig. 5: Power for the detection of 1 copy deletion and 1 copy 
amplification for data of varying coverage (per base), heterozygous SNP count, and 
number of cells. The heterozygous SNP count reflects the size of the region: larger 
regions contain more heterozygous loci. Cells were clustered based on the minimum 
distance of 𝜃(!  to the canonical values. Top: phasing accuracy, defined as the proportion 
of SNPs with 𝐼+#  correctly estimated; bottom: cell CNV state accuracy, defined as the 
proportion of cells that are correctly assigned to carrier state. Amp: amplification. Del: 
deletion. Line types represent different proportions (50%, 10% and 5%) of carrier cells. 
The number of SNPs, coverage, number of cells and purity were set as 10,000, 0.03, 
1000, and 0.5 if not specified. 
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Supplementary Fig. 6: The segmentation plot (a) and heatmap of the genome-wide 
haplotype profiles (b) for the P5846 sample. In the color panel, M and m represent the 
“Major haplotype” and “minor haplotype” respectively. 
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Supplementary Fig. 7: The segmentation plot (a) and heatmap of the genome-wide 
haplotype profiles (b) for the P5847 sample. In the color panel, M and m represent the 
“Major haplotype” and “minor haplotype” respectively. 
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Supplementary Fig. 8: The segmentation plot (a) and heatmap of the genome-wide 
haplotype profiles (b) for the P5915 sample. In the color panel, M and m represent the 
“Major haplotype” and “minor haplotype” respectively.  
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Supplementary Fig. 9: The segmentation plot (a) and heatmap of the genome-wide 
haplotype profiles (b&c) for the P6198 sample. Two segmentation methods were 
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applied on this sample. (b) The genome-wide haplotype profiles estimated using FALCON. 
(c) The genome-wide haplotype profiles estimated using ASCAT. In the color panel, M 
and m represent the “Major haplotype” and “minor haplotype” respectively.  
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Supplementary Fig. 10: The segmentation plot (a) and heatmap of the genome-wide 
haplotype profiles (b) for the P6335 sample. In the color panel, M and m represent the 
“Major haplotype” and “minor haplotype” respectively.  
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Supplementary Fig. 11: The segmentation plot (a) and heatmap of the genome-wide 
haplotype profiles (b) for the P6461 sample. In the color panel, M and m represent the 
“Major haplotype” and “minor haplotype” respectively.  
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Supplementary Fig. 12: The segmentation plot and heatmap of the genome-wide 
haplotype profiles for the breast cancer sample (section D). (a) Genome 
segmentation using HMM on the pooled coverage signals across the cells. (b) Genotype 
profiles of five example regions. The coloring scheme is same as that in part (c). (c) 
Hierarchical clustering of single-cell ASCN genotypes reveals complex subclone structure. 
Genotypes of the five regions in three example cells from the three major subclones are 
shown in the left. Different colors represent different genotypes. In the color panel, M and 
m represent the “Major haplotype” and “minor haplotype” respectively.  
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Supplementary Fig. 13: Phasing accuracy for the CNA regions in the P6198 sample 
by comparing to the matched linked-read sequencing data. LOH: segments with any 
LOH events. Amp: segments with amplifications that lead to allelic imbalance. Ctrl: control 
segments without allelic imbalance. For the LOH (n=9), Amp (n=14), and Ctrl (n=11) 
regions, the boxplots show the interquartile range and the median. 
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Supplementary Fig. 14. Genome-wide coverage comparison in large genomic bins 
between two normal cell types for the SU008 sample. Each point in the scatter plots 
represent the normalized read counts in each 10Mb bin along the genome for endothelial 
cells (left) and fibroblasts (right). The normalized read counts were computed by dividing 
the median read counts of cells of one normal cell type by the median read counts of cells 
of the other cell type.   
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Supplementary Fig. 15: Single cell genotyping of CNV events by Alleloscope for 
scATAC-seq data of a basal cell carcinoma sample (SU0061). (a) Genotype profiles 
of six example regions.  The regions were taken from the segmentation of whole exome 
sequencing (WES) data. Each dot represents a cell-specific (𝜌#!,  𝜃(!) pair. Cells are colored 
by annotation derived from peak signals1. Two tumor cell clusters, identified using ATAC 
peaks, are labeled by red and blue; fibroblasts (Fibro) are labeled by grey. Density 
contours of the three cell subpopulations are also shown. (b) Hierarchical clustering of 
cells in scATAC-seq by 𝜃(! reveals that the two tumor subpopulations are differentiated by 
peak signals that don’t correlate with broad copy number events.  
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Supplementary Fig. 16: Confidence scores for the genotype assignment of each 
cell in each region for the SNU601 scDNA-seq dataset.  
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Supplementary Fig. 17: Distribution of the posterior confidence scores of subclone 
assignment for the 2,753 cells from SNU601 scATAC-seq.  
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Supplementary Fig. 18: The segmentation plot (a) and heatmap of the genome-wide 
haplotype profiles (b) for the HM-SNS sample2. In the color panel, M and m represent 
the “Major haplotype” and “minor haplotype” respectively. 
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Supplementary Tables 

Supplementary Table 1. Summaries of the scDNA-seq datasets. 

 

Supplementary Table 2. Performance of CHISEL with or without external phasing 
information. CHISEL was run with default setting (50kb block size with external phasing 
information) or without external phasing (block size 1) 

Dataset Method Sensitivity Specificity 

P5931 CHISEL: default 
(before correction) 

0.7520 0.9434 

 CHISEL: default 
(after correction) 

0.0112 0.9508 

 CHISEL: block size 1 
(before correction) 

0.5939 0.7878 

Sample Cancer 
type 

Source MSI 
status 

Pairedn
ormal 

Linked 
-reads 

Coverage 
per cell 

Cell 
number 

Ref 

P5846 Gastric Primary 
tissue 

MSS Yes No 454,806 510 3 

P5847 Gastric Primary 
tissue 

- Yes No 422,134 715  - 

P5915 Colorectal Liver 
meta 

MSS Yes Yes 1,262,629 233 3 

P5931 Gastric Primary 
tissue 

MSI Yes Yes 730,932 796  - 

P6198 Colorectal Liver 
meta 

MSS Yes Yes 532,343 2,271 3 

P6335 Colorectal Omentu
m meta 

MSS No Yes 564,058 953 3 

P6461 Colorectal Primary 
tissue 

- Yes Yes 483,524 1,242  - 

SNU601 Gastric Ascites 
meta 

MSS No No 565,648 1,531 4 

BC10x 
(secD) 

Breast Primary 
tissue 

- No No 781,506 1,916 5 

BC10x 
(secE) 

Breast Primary 
tissue 

- No No 951,225 2,053 5 
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 CHISEL: block size 1 
(after correction) 

0.7465 0.7948 

P6198 CHISEL: default 
(before correction) 

0.9397 0.9311 

 CHISEL: default  
(after correction) 

0.9700 0.9359 

 CHISEL: block size 1 
(before correction) 

0.8067 0.8608 

 CHISEL: block size 1 
(after correction) 

0.8320 0.8686 

P6335 CHISEL: default 
(before correction) 

0.7858 0.9873 

 CHISEL: default 
(after correction) 

0.8404 0.9943 

 CHISEL: block size 1 
(before correction) 

0.6959 0.9705 

 CHISEL: block size 1 
(after correction) 

0.7450 0.9782 

 

Supplementary Table 4. Summaries of the scATAC-seq datasets. 

 

  

Sample Cancer 
type 

Source Matched 
DNA 

Coverage 
per cell 

Cell 
number 

Ref 

SU006 Basal cell 
carcinoma 

Primary tissue Bulk WES 41,368 2771 1 

SU008 Basal cell 
carcinoma 

Primary tissue Bulk WES 36,057 788 1 

SNU601 Gastric Ascites meta scDNA-seq 73,845 3614  - 
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Supplementary Results 

Benchmark 1: Assessment of Alleloscope and CHISEL using whole genome 

haplotypes derived from linked read sequencing 

So far, CHISEL is the only other comparable method for allele-specific copy number 

estimation with scDNA-seq data. We comprehensively benchmarked Alleloscope and 

CHISEL using the following two strategies: (1) We compared each method’s output under 

default parameter settings, without linked read phasing, to the same method’s output 

obtained given linked-reads phasing. This was done for the five samples (P5931, P5915, 

P6198, P6335, and P6461) of varying complexity for which matched linked-read 

sequencing was performed. (2) We compared each method’s output at original 

sequencing coverage to the same method’s output at 50% or 25% coverage.  This was 

performed for the high-coverage breast cancer sample that CHISEL analyzed in their 

paper.  The rationale is that results at original coverage, though noisy, should be closer 

to the truth than results at reduced coverage, and thus the method whose output remains 

more stable under data down-sampling is more accurate at these lower coverages 

(Supplementary Methods). 

For the first benchmark strategy, we used P5931 as an illustrating example. P5931 tumor 

sample carries simpler but representative haplotype-specific profiles. For each method, 

we obtain two different sets of results: Results obtained by default parameter settings, 

and results obtained by plugging in known phases provided by the matched linked-read 

sequencing data. The latter, results obtained using known phases, is used as the gold 

standard for assessing each method.  
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 Supplementary Fig. 2 compares the estimated genome-wide haplotype profiles by 

Alleloscope with and without known phases. As explained in the manuscript, 

Alleloscope’s color scheme gives a different color for each allele-specific copy number 

state, with gray being normal diploid (“Mm”), gradients of brown being amplification, and 

gradients of blue being deletion. Alleloscope achieved a sensitivity of 0.9402 and 

specificity of 0.9986. The sensitivity here can also be referred to as “recall.”  

For CHISEL, there is an extra “correction step” where the inferred clones are used to 

generate consensus allele-specific copy number profiles for all cells within each clone.  In 

Supplementary Fig 3, we show CHISEL’s output with and without this correction step.  

For each result, CHISEL gives two heatmaps: the left heatmap showing the allele-specific 

copy number state, and the right heatmap showing, for configurations where there is an 

allelic imbalance, which is the major allele. Sensitivity for CHISEL is 0.7520 (before 

correction) and 0.0112 (after correction), and specificity is 0.9434 (before correction) and 

0.9508 (after correction). As a sanity check, we also compared the two “gold standards”: 

CHISEL’s results obtained using linked-reads phasing, and Alleloscope’s results obtained 

using linked-reads phasing. The two gold standards have a similarity of 0.9945 (before 

correction) and 0.9851 (after correction), thus indicating that they are both accurate 

reflections of the underlying truth.   

Note that for this example, CHISEL’s clone-based correction step actually erases most of 

the signal (the amplifications on chr7, chr8, and chr20, as well as the deletion on chr21 

are erased by the correction). However, in other samples, we have noticed the reverse, 

where the results after the correction are better. Thus, CHISEL’s estimates are not robust 
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to errors in clonal inference. The better of CHISEL’s two outputs (the uncorrected version) 

still has significantly lower specificity and sensitivity as compared to Alleloscope.  

Comparing Supplementary Figures 2 and 3, we can see how the results from Alleloscope 

and CHISEL differ. The cells in both plots are ordered by their ordering in the linked-read-

based heatmap. In CHISEL’s results, the cells deemed noisy are labeled with grey color 

in the clonal assignment for each result. There are many more “horizontal stripes”, 

showing cells that have copy number estimates that disagree with its clonal average. Also, 

there are many more cells deemed “too noisy” by CHISEL, these are clustered at the tops 

and bottoms of the heatmaps. This leads to the lowered specificity and sensitivity of 

CHISEL in this sample. 

Besides using the default setting, we also explored the extent to which CHISEL relies on 

the external phasing information. We found that CHISEL is very sensitive to not only the 

block-size parameter, but also the selection of the phasing panel using P5931 as an 

example (Supplementary Fig. 3; Supplementary Table 2). Even for the same patient, the 

tumor tissue and matched normal tissue differ in their phasing profiles at key regions 

surrounding chromosomal breakpoints, which can lead to different results under CHISEL. 

Effects of external phasing were also explored in two additional samples—P6335 and 

P6198 (Supplementary Table 2). This reinforces the rationale that, for allele-specific copy 

number estimation of tumor samples, it would be best to not rely on external phasing. 

We also performed such detailed assessment between CHISEL and Alleloscope on four 

other samples, with differing CNA complexity, that have matched linked-read sequencing 

data—P6198, P6335, P5915 and P6461. Sensitivity and specificity of the four samples 
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and those of P5931 for the two methods are shown in Table 1. The results show that 

Alleloscope outperforms CHISEL in allele-specific copy number estimation for most 

samples, and both methods perform similarly for P6198. The high 0.97 sensitivity of 

CHISEL after correction results from the fact that P6198 is a tumor sample with one major 

subclone and multiple LOH regions that are easier to be detected (Supplementary Fig. 9). 

For P6198, CHISEL generates consensus allele-specific copy number profiles for all cells 

clustered in the same clone, which leads to extremely high sensitivity in this easier case. 

Benchmark 2: Assessment of method robustness by downsampling 

In addition to the linked-reads based benchmark, we also compared Alleloscope and 

CHISEL on the breast cancer sample that CHISEL analyzed in their study. This data set 

does not have true phasing information, but was sequenced at much higher coverage, 

and thus, we subsampled 50% and 25 % of the original dataset and compared the 

estimated results of the subsampled datasets to that of the original datasets to assess 

the performance of the two methods across varying sequencing coverage. The results on 

the original dataset, on the 50% subsampled dataset and on the 25% subsampled dataset, 

given by Alleloscope and CHISEL, are shown in Supplementary Fig. 4. For CHISEL, the 

clone-corrected output plots are shown since they are more accurate than the 

uncorrected ones. Using the results from the original dataset as the ground-truth, 

performance of Alleloscope and CHISEL for the two subsampled datasets is shown in 

Table 1. Sensitivity and specificity are both high (>0.90) for both Alleloscope and CHISEL 

on the 50% subsampled dataset. However, for the 25% subsampled dataset, sensitivity 

decreases to ~0.82 and specificity decreases to ~0.95 for Alleloscope, while CHISEL fails 

in estimating allele-specific copy numbers on this dataset with both sensitivity and 
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specificity decreasing to ~65%. The performance can also be visualized in 

Supplementary Fig. 4. While the lineage plots look noisier with more dark horizontal 

bands as the coverage decreases, CHISEL fails to not only estimate allele-specific copy 

numbers for some regions (like those grey vertical bands on chr10, 11, 13, and 17), but 

also the direction of the two haplotypes for almost the whole genome. 

For scDNA-seq allele-specific copy number estimation, Alleloscope has higher sensitivity 

and specificity comparing to the known phases provided by the matched linked-reads on 

the five scDNA-seq samples. The subsampling results also suggest that Alleloscope is 

more robust at lower coverage.  

Algorithmic differences between CHISEL and Alleloscope 

Here we describe the algorithmic differences between CHISEL and Alleloscope, which 

can help explain the differences in their performance. CHISEL was designed for scDNA-

seq data and is not applicable to scATAC-seq data. The improvements of Alleloscope 

over CHISEL are due to fundamental differences in their algorithm design: Alleloscope is 

a top-down method that first segments the genome, allowing for the aggregation across 

all SNPs in a large region to estimate haplotype profiles for each cell. This allows the 

algorithm to achieve higher sensitivity for events carried by smaller subclones, as well as 

robustness against local fluctuations in allelic coverage. Delineating the segments in the 

first step also allows for the simultaneous estimation of phase and single cell haplotype 

ratios, thus bypassing the need for external phasing data. In comparison, CHISEL is a 

bottom-up approach that estimates copy number profiles of each cell in smaller fixed-

length bins (default 5Mb). Selection of the bin size faces a trade-off between having more 
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SNPs (and thus more data points for estimation) and heterogeneity of the true CNA profile 

in the within the bin. To overcome the sparsity of data within each bin, CHISEL relies on 

external phasing to achieve better allele-specific copy number estimation. Choice of the 

external phasing data can substantially impact estimation results (Supplementary Fig. 3).    

  



 31 

Supplementary Methods 

Second-stage estimation 

To improve copy number state estimation in regions with low proportion of cells carrying 

CNAs, a second-stage scheme was developed. We first estimated cell-level CNV states 

by the methods described in Methods. After the first-round estimation, some cells with 

low proportions might have shifts in their coverage (𝜌#!") but their allelic imbalance level 

(𝜃(!") do not correspond to the coverage change for some regions. Visualizing this from 

the scatter plots, the second-stage estimation can be executed to estimate phases using 

only the targeted cells.   

In the second-round estimation, SNPs in region 𝑟  are first filtered out if no read is 

observed among the targeted cells. The phases of these filtered SNPs can be estimated 

as described in the “SNP Phasing and Single-cell Allele Profile Estimation per region” 

section of Methods. Using the estimated phases for the filtered SNPs, the allelic 

imbalance level of the targeted cells and other non-targeted cells can both be estimated. 

Benchmarks of Alleloscope and CHISEL 

We benchmarked Alleloscope and CHISEL on the scDNA-seq samples using two 

strategies explained below. These samples include five (P5931, P5915, P6198, P6335, 

and P6461) for which matched linked-read sequencing was performed, and the high-

coverage breast cancer sample that CHISEL analyzed in their paper. 

For CHISEL, we prepared the four required input files following the online tutorial. Since 

no matched normal sample exits for P6335 and BC10x, we first generated bam files for 
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normal cells in the tumor samples using CHISEL as they suggested. To run CHISEL with 

the default settings, Eagle2 through Michigan Imputation Server was used to phase 

germline SNPs following their pipeline. 

Benchmark 1:  Comparison to results obtained by linked-reads phase information.   

For each method, we obtain two different sets of results: Results obtained by default 

parameter settings, and results obtained by plugging in known phases provided by the 

matched linked-read sequencing data. The latter, results obtained using known phases, 

is used as the gold standard for assessing each method. Since linked-read sequencing 

data can provide phase information covering Mb scale, haplotype block was set as 1Mb 

for P5931 to run CHISEL to retrieve the result used as the gold standard. For P6198 and 

P6335, we observed that setting a block size of 1Mb introduced additional noise because 

the 1Mb block used might be different from that provided by the linked-read sequencing 

data. We instead used the original 50kb block for these two samples. GRCh38 referecne 

genome was used to analyze these samples. Between the results by default setting and 

by plugging in known phases, the directions of the two haplotypes (considered as either 

A or B) might be reversed for some chromosomes depending on the phasing information 

used. To make the results comparable, directions of the two haplotypes estimated by the 

default setting were used as the scaffold to place the directions of the two haplotypes for 

the results by plugging the known phases, which was similar to the comparison in 

Alleloscope.  

Benchmark 2: Comparison of results at down-sampled coverage to results at original 

coverage for a high coverage sample.  
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We compared Alleloscope and CHISEL on the breast cancer sample that CHISEL 

analyzed in their study by subsampling. We first subsampled 50% and 25 % of the original 

dataset using samtools. Alleloscope and CHISEL were run on the original dataset, 50% 

and 25% subsampled datasets using default settings on the GRCh37 reference genome. 

The estimated results of the subsampled datasets were compared to that of the original 

datasets (used as the gold standard) to assess the performance of the two methods 

across varying sequencing coverage respectively.  

To compare Alleloscope and CHISEL, each segment analyzed by Alleloscope was 

divided into 5Mb bins following the format in CHISEL’s output. Then, sensitivity and 

specificity were computed as follows: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 =
𝑇𝑃
𝑃 , 

where: 

TP 5Mb bins across the cells and across the genome considered to be abnormal 

(haplotype profiles other than 1|1) in both the results used as gold standard and 

the estimated results;  

P: 5Mb bins across the cells and across the genome considered to be abnormal in 

the result used as gold standard. 

and 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦	 = 	𝑇𝑁/𝑁, 
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where  

TN: 5Mb bins across the cells and across the genome considered to be normal 

diploid in both the results used as gold standard and the estimated results;  

N: 5Mb bins across the cells and across the genome considered to be normal 

diploid in the result used as gold standard. 

For a sanity check, similarity was also computed for the two “gold standards”: CHISEL’s 

results obtained using linked-reads phasing, and Alleloscope’s results obtained using 

linked-reads phasing. We first generated two cell by 500M-bin matrices for both methods 

with the values indicating the allele-specific copy number profiles. Then similarity was 

computed as the proportion of the same copy number profiles across the cells and the 

500M bins.  

Simulations and Power Analysis 

For a simulated region, let 𝑛 be the number of cells, 𝑚 be the number of heterozygous 

SNPs, 𝜃 be the major haplotype proportion, and 𝜇! be the total coverage of cell 𝑖 

sampled from the cells on chr7 in the P5931 tumor sample. For cell 𝑖, we simulated total 

coverages of SNP j (𝜇!#) using a Poisson distribution 

𝜇!#~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇!), 

where 𝑖 = 1~𝑛. Parallelly, phases of SNP j (𝐼#) were simulated under a Bernoulli 

distribution 

𝐼#~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 
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where 𝐼# indicates whether a reference allele is on the major haplotype for SNP j, and 

𝑗 = 1~𝑚. Using 𝜇!# and 𝐼#, read counts of reference alleles of SNP j in cell i (𝐴!#) were 

simulated under a Binomial distribution 

𝐴!#~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙!𝜇!# , 𝑝!#', 

where 𝑝!# is the proportion of the reference allele for SNP 𝑗 in cell 𝑖 with the values 

shown in the following table 

𝑝!# cell 𝑖 with CNA cell 𝑖 without CNA  
𝐼# = 1 𝜃 0.5 
𝐼# = 0 1 − 𝜃 0.5 

 

Then simulated read counts of alternative alleles of SNP 𝑗 in cell 𝑖 (𝐵!#) were computed 

by  

𝐵!# = 𝜇!# − 𝐴!# 

To explore the effects of SNP numbers, cell coverage, cell numbers, and purity, power 

analysis was performed for one-copy deletion and one-copy amplification scenarios. We 

assessed the accuracy for phasing and cell-level CNA state estimation under the 

following scenarios: SNP numbers from 1,000 to 50,000, mean coverage from 0.01 to 

0,05 for each cell, cell number from 500 to 2500. For different scenarios, we assessed 

the effect of three purities: 0.5, 0.1, and 0.01, reflecting from larger subclones to rare 

subclones. Besides the parameters that were assessed, other parameters were set as 

follows: the cell number 𝑛 = 1,000, the SNP number 𝑚 = 10,000, 𝜃 was set as 1 and 
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0.66 for cells carrying deletion and one-copy amplification respectively with the purity 

equal to 0.5.  

Phasing accuracy was calculated by comparing true 𝐼# ’s and estimated 𝐼+# ’s in the region 

with the details described in the previous section. On the other hand, the accuracy of 

cell CNA state estimation was the clustering accuracy using the estimated 𝜃(! values. 

Cells with 𝜃(! values smaller than the midpoints between true	𝜃 of normal cells (𝜃$ = 0.5) 

and true 𝜃 of carriers (𝜃%&' = 1	;	𝜃()* = 0.66	) were considered as normal cells; 

otherwise, cells were considered as carriers. The clustering accuracy was calculated by 

comparing the clusters to the true cell states. 

Assessment of coverage in large genomic bins for scATAC-seq 

To compare with the CNA analysis method using only coverage for the scATAC-seq data, 

we assessed if false-positive signals can still be observed even with large genomic bins 

using the two normal cell types (endothelial cells and fibroblasts) in the SU008 scATAC-

seq dataset. The identity of the two normal cell types were based on their genome-wide 

peak signals. Following the method in the original paper1, we first summed all the read 

signals normalized with the cell size in each 10Mb bins with a 2Mb sliding window along 

the genome for each cell. Then for each normal cell type, the signals of each bin were 

normalized by dividing the median of the total signals across the cells in one normal cell 

type by the median of the total signals across the cells in the other cell type. This step 

was similar to using normal cells as the control to normalize the signals in tumor cells to 

assess the copy number change.  
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Inference of MLE estimates for the copy number adjustment model 

For peak k, the binomial distribution with specific terms to adjust for copy numbers is used 

to model the observed read counts: 

𝑌+, ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁+ , 	𝑓,(𝜃+)𝑝+,), 

see details of each term in Methods.  For each peak 𝑘,  two clones (clone 𝑐- and clone 

𝑐.) are compared using the generalized likelihood ratio test (GLRT) with the hypothesis 

𝐻/:	𝑝+!, = 𝑝+", = 𝑝/ and 𝐻-: 𝑝+!, ≠ 𝑝+",. as the GLRT in this case has null distribution that 

is 𝜒-., and has the form:  

𝐿𝐿𝑅, = 2ℓ!𝑝̂+!, , 𝑝̂+",' − 2ℓ(𝑝̂/,) 

Where 2ℓ!𝑝̂+!, , 𝑝̂+",'  is the maximized log-likelihood under the alternative, with 	

𝑝̂+!,, =
𝑌+",
𝑁+"

, 𝑝̂+!,, =
𝑌+",
𝑁+"

 

and  𝑙(𝑝̂/,) is the maximized log-likelihood under the null, with the MLE computed as 

follows: For simplicity, we first use 𝑝/ to denote 𝑝/,; 𝑓-, 𝑁-, 𝑌- to denote 𝑓,!𝜃+!', 𝑁+!, , 𝑌+!,; 

and 𝑓., 𝑁., 𝑌. to denote 𝑓,!𝜃+"', 𝑁+", , 𝑌+", .  Then 

ℓ(𝑝/) = log[(	𝑓-𝑝/)1!(	1 − 𝑓-𝑝/)2!31!(	𝑓.𝑝/)1"(	1 − 𝑓.𝑝/)2"31"] 

𝑑
𝑑(𝑝/)

	ℓ(𝑝/) =
𝑌-𝑓-
𝑓-𝑝/

+ (𝑁- − 𝑌-) d−
𝑓-

1 − 𝑓-𝑝/
e +

𝑌.𝑓.
𝑓.𝑝/

+ (𝑁. − 𝑌.) d−
𝑓.

1 − 𝑓.𝑝/
e 

=
𝑌-
𝑝/
− (𝑁- − 𝑌-)

𝑓-
1 − 𝑓-𝑝/

+
𝑌.
𝑝/
− (𝑁. − 𝑌.)

𝑓.
1 − 𝑓.𝑝/

= 0 
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𝑌-(1 − 𝑓-𝑝/)(1 − 𝑓.𝑝/) − 𝑝/𝑓-(𝑁- − 𝑌-)(1 − 𝑓.𝑝/) + 𝑌.(1 − 𝑓-𝑝/)(1 − 𝑓.𝑝/)

− 𝑝/𝑓.(𝑁. − 𝑌.)(1 − 𝑓-𝑝/) = 0,	

[𝑌-𝑓-𝑓.𝑝/. − 𝑌-(𝑓- + 𝑓.)𝑝/ + 𝑌-] − 𝑝/𝑓-𝑁- + 𝑝/𝑓-𝑁-𝑓.𝑝/	 + 𝑝/𝑓-𝑌- − 𝑝/𝑓-𝑌-𝑓.𝑝 + [𝑌.𝑓-𝑓.𝑝/.

− 𝑌.(𝑓- + 𝑓.)𝑝/ + 𝑌.] − 𝑝/𝑓.𝑁. + 𝑝/𝑓.𝑁.𝑓-𝑝/ + 𝑝/𝑓.𝑌. − 𝑝/𝑓-𝑌.𝑓.𝑝 = 0,	

(𝑌- + 𝑌.)𝑓-𝑓.𝑝/. − (𝑌- + 𝑌.)𝑝/(𝑓- + 𝑓.) + (𝑌- + 𝑌.) − 𝑝/𝑓-(𝑁- − 𝑌-) − 𝑝/𝑓.(𝑁. − 𝑌.)

+ 𝑝/.𝑓-𝑓.(𝑁- − 𝑌-) + 𝑝/𝑓.(𝑁. − 𝑌.)

= 𝑓-𝑓.(𝑁- + 𝑁.)𝑝/. − (𝑓-𝑁- + 𝑓.𝑁. + 𝑓-𝑌. + 𝑓.𝑌-)𝑝/ + (𝑌- + 𝑌.) = 0,	

Let 𝑎 = 𝑓-𝑓.(𝑁- + 𝑁.); 𝑏 = (𝑓-𝑁- + 𝑓.𝑁. + 𝑓-𝑌. + 𝑓.𝑌-); 𝑐 = (𝑌- + 𝑌.), 

𝑝̂/ =
−𝑏 − √𝑏.	 − 4𝑎𝑐

2𝑎 , d0 < 𝑝/ < 𝑚𝑖𝑛 j
1
𝑓-
,
1
𝑓.
ke.	

 

Highly-multiplexed single-nucleus-sequencing (HM-SNS) data preprocessing and 

analysis 

To show that Alleloscope can work on scDNA-seq data generated using protocols other 

than the 10x one, we applied the method to a HM-SNS dataset form Kim et al.’s study. 

Total 89 fastq files for patient 2 were retried from SRP114962. Raw fastq files were 

aligned to the GRCh37 reference genome using bwa-mem with duplicate reads removed 

using the Picard toolkits. SAMtools was used to add read group, sort and index the bam 

files. After the bam files for individual cells were generated, the standard GATK workflow 

was followed to joint-call SNPs for all the cells to generate the SNP by cell matrices for 
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the reference and alternative alleles. The bin-by-cell matrix was generated using SCOPE6. 

To obtain a SNP set including only SNVs that are more possible to be germline SNPs, 

we further filtered out the SNVs <10 reads or with extreme VAF values outside the (0.3, 

0.9) range. A 0.3 threshold was due to a small peak in the histogram of the VAF values 

below 0.3, which resulted from many somatic SNVs detected when calling SNVs on 

individual cells. Since no matched normal exists for this sample, we first identified tumor 

and normal cells in the sample using  𝜃(!" estimated on each chromosome (instead of on 

the segments). Using total cell sizes to retrieve the normalized 𝜌#!"  values, we then 

estimated the allele-specific copy number profiles using the same procedure described in 

the main text. 
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